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Abstract. We critically analyze the problem of light propagation in stratified birefringent gyrotropic media
by introducing a 4 × 4 matrix formulation. As a test model we consider the case of short-pitch chiral
smectic-C liquid crystals, for which simple descriptions in terms of an effective gyrotropic homogeneous
model and of a microscopic periodic structure are available. By comparing reflectances and transmittances
from finite and semi-infinite slabs, we show that the homogeneous description is unable to account for
some of the properties of the underlying periodic structure, whatever small is the pitch with respect to the
light wavelength.

PACS. 78.20.Ek Optical activity – 61.30.-v Liquid crystals

1 Introduction

The rotation of the polarization’s direction, per unit thick-
ness, of light propagating in an optically-active material
scales as the ratio a/λ2 between some typical molecular
length a and the square of the light wavelength λ. There-
fore, optical activity is a clear manifestation of the molec-
ular structure of matter. However, since usually a � λ,
it is generally described in terms of macroscopical homo-
geneous constitutive relations [1]. This poses a few prob-
lems: to connect the macroscopic quantities appearing in
the constitutive relations with the microscopic properties
of the medium [2–5], to analyze the internal coherence
and the physical implications of the macroscopic equations
[6–9], and more generally to determine to what extent a
homogeneous model can describe a property, such as op-
tical activity, that is entirely due to the inhomogeneous
nature of the medium.

In the past several homogeneous gyrotropic constitu-
tive relations have been formulated. Born, on the basis of
microscopic considerations, proposed the following equa-
tions for isotropic media [10]

D = ε (E + γ∇×E) ,

B = µ0H. (1.1)

In the anisotropic case, they generalize to the Landau
form [11]

Di = ε0

(
ε′ijEj + γijk

∂Ej

∂xk

)
,

Bi = µ0Hi, (1.2)

a e-mail: paolo@iris.polito.it

(here and in the following, summation over repeated in-
dices is implied). In these equations, the contribution
to the electric displacement proportional to the spatial
derivatives of the electric field describes the spatial inho-
mogeinity of the medium and, for a plane wave, gives rise
to an effective dielectric tensor whose imaginary part lin-
early depends on the light wavevector components. Other
alternative approaches, instead, consider algebraic consti-
tutive equations that mix electric and magnetic fields. An
example is given by the Post constitutive relations [12]

Di = ε0εijEj + ε0cξijBj ,

Hi = µ−1
0 Bi + ε0cζijEj . (1.3)

These latter formulations agree with the microscopic find-
ings that optical activity in chiral molecules is due to the
excitation of both electric and magnetic dipoles [2,5]. It
can be shown [12] that in the bulk these different ap-
proaches are essentially equivalent, but they differ when
boundary conditions are considered [13], since the Lan-
dau formalism (1.2) does not satisfy energy conservation
across boundaries.

In this paper we shall analyze in detail the case of
a stratified optically-active medium, giving a solution to
the problem in terms of a Berreman-like 4× 4 matrix for-
malism. To develop and test this homogeneous model, we
shall specifically consider the case of a chiral smectic-C
liquid crystal (S∗c ) [14] having a pitch much smaller than
the light wavelength. To a good degree of approximation,
a S∗c can be considered as a locally uniaxial medium, in
which the optical axis periodically rotates along a fix di-
rection, describing an helix. The advantage of this system
is the availability of simple “microscopic” and macroscopic
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descriptions. In particular, for light propagating along the
helical axis, exact analytical solutions are available [15]
that give a pseudo-rotatory power scaling as (p/λ)3, and
therefore becoming rapidly negligible as p/λ → 0. When
the pitch of the helix is small with respect to the light
wavelength, instead, an even simpler approximate analyt-
ical solution has been recently found, that shows a true
rotatory power, scaling as p/λ, for light propagating or-
thogonally to the helical axis [16]. In Section 2, starting
from this recently proposed macroscopic model of short-
pitch S∗c ’s, we formulate a Berreman-like set of equations
for stratified optically-active anisotropic media. In Sec-
tion 3 we compare reflectances and transmittances from a
S∗c sample computed according to the homogeneous model
and to the actual microscopic structure, discussing the
limits of validity of the former. Finally, in Section 4 we
summarize and discuss our results.

2 Theory

A dielectric periodic medium having a pitch much smaller
than the light wavelength can be described in terms of
an effective homogeneous model displaying optical activ-
ity [16,17]. In particular, for an unbounded chiral smectic-
C liquid crystal, the components of the effective dielectric
tensor experienced by a plane wave of wavevector k can
be written as [16]

(εeff )mn = ε′mn + iγmnrkr, (2.1)

where summation over repeated indices is understood and
kr are the components of k. In the orthogonal Cartesian
frame whose z-axis coincides with the helical axis of the
S∗c , the real part of the dielectric tensor is

ε′ =

ε′o 0 0
0 ε′o 0
0 0 ε′e

 , (2.2)

with

ε′o = εo +
εaεo sin2 α

2(εe − εa sin2 α)
,

ε′e = εe − εa sin2 α. (2.3)

Here εo (resp. εe) is the local ordinary (resp. extraordi-
nary) dielectric constant of the periodic medium, εa =
εe − εo is the dielectric anisotropy, and α is the tilt angle
of the S∗c . The third-rank tensor γmnr can be expressed as

γijk = k−1
0 eijmgmk, (2.4)

where k0 = 2π/λ is the vacuum wavevector, eijm the to-
tally antisymmetric Levi-Civita tensor, and gij are the
components of the second rank gyration tensor [11]

g = g⊥

1 0 0
0 1 0
0 0 0

 , (2.5)

with

g⊥ = −
p

λ

ε2a sin2(2α)

8(εe − εa sin2 α)
, (2.6)

where p is the S∗c pitch. The effective dielectric tensor (2.1)
has been obtained by considering the propagation of a
plane wave in an unbounded periodic medium. It is uni-
axial and its imaginary part, which describes the optical
activity, displays spatial dispersion, i.e., depends on the
light wavevector k.

For non-homogeneous media and arbitrary electromag-
netic fields, it might seem natural to generalize the con-
stitutive equation (2.1) according to the Landau formal-
ism (1.2), with the replacement ikr → ∂/∂xr. However,
with the Landau constitutive relations, energy conserva-
tion requires not only the antisymmetry of the third-rank
tensor γijk, γijk = −γjik [11] (which is locally satisfied in
a non-dissipative dielectric as the one that we are consid-
ering), but also that the sample is homogeneous [18]. This
is a signature of the failure of this formulation in the gen-
eral case. To overcome this problem, we shall recast the
constitutive equations in the Post formalism (1.3). Within
this formulation, energy is conserved if at any point [1]

ε = ε†, ζ = −ξ†. (2.7)

As noted by Peterson [12], in a homogeneous sample the
constitutive relations (1.2, 1.3, 2.4) are equivalent pro-
vided that

ξ = iR,

ζ = −iRt,

ε = ε′ + RRt,

R =

(
1

2
Tr g

)
I− g, (2.8)

where Tr indicates the trace and Rt is the transpose of R.
More precisely, in the two formulations the physical fields
E and B are the same, while the fields D and H are
modified in such a way that Maxwell’s equations hold
true with the two different constitutive equations. If the
medium is not homogeneous, the correspondence (2.8)
does not hold any more. In particular, the Post formu-
lation (1.3) ensures energy conservation also in a non-
homogeneous sample. For this reason, we shall assume
that equations (1.3, 2.8) represent the correct constitu-
tive equations for non-homogeneous gyrotropic materials.
Using these equations, for a sample stratified in the z-
direction and homogeneous in the transverse directions x
and y, we can cast Maxwell’s equations in the Berreman
form [19]

dψ

dz
= ik0Bψ, (2.9)

where ψ is the column matrix containing the amplitudes
of the transverse fields

ψ =

 ex
hy
ey
−hx

 , (2.10)
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and the elements of the 4×4 Berreman matrix B are given
by

B11 = −iR12 + (ε33 −R
2
33)−1(p0 − iR32)

×[−ε31 + iR33(q0 − iR13)] ,

B12 = 1− (ε33 −R
2
33)−1(p2

0 +R 2
32) ,

B13 = −iR22 − (ε33 −R
2
33)−1(p0 − iR32)

×[ε32 + iR33(p0 + iR23)] ,

B14 = −(ε33 −R
2
33)−1(p0 − iR32)(q0 − iR31) ,

B21 = ε11 + (ε33 −R
2
33)−1 [−ε31ε13 + iR33ε13(q0 − iR13)

−iR33ε31(q0 + iR13)− ε33(q2
0 +R 2

13)
]
,

B22 = iR12 − (ε33 −R
2
33)−1(p0 + iR32)

×[ε13 + iR33(q0 + iR13)] ,

B23 = ε12 + (ε33 −R
2
33)−1 [−ε13ε32

+ε33(q0 + iR13)(p0 + iR23)

−iR33ε13(p0 + iR23)− iR33ε32(q0 + iR13)] ,

B24 = −iR11 − (ε33 −R
2
33)−1(q0 − iR31)[ε13

+iR33(q0 + iR13)] , (2.11)

B31 = iR11 + (ε33 −R
2
33)−1(q0 + iR31)[−ε31

+iR33(q0 − iR13)] ,

B32 = −(ε33 −R
2
33)−1(q0 + iR31)(p0 + iR32) ,

B33 = iR21 − (ε33 −R
2
33)−1(q0 + iR31)[ε32

+iR33(p0 + iR23)] ,

B34 = 1− (ε33 −R
2
33)−1(q2

0 +R 2
31) ,

B41 = ε21 + (ε33 −R
2
33)−1 [−ε23ε31 + iR33ε23(q0 − iR13)

+iR33ε31(p0 − iR23) + ε33(q0 − iR13)(p0 − iR23)] ,

B42 = iR22 + (ε33 −R
2
33)−1(p0 + iR32)[−ε23

+iR33(p0 − iR23)] ,

B43 = ε22 + (ε33 −R
2
33)−1

[
−ε32ε23 − ε33(p2

0 +R 2
23)

−iR33ε23(p0 + iR23) + iR33ε32(p0 − iR23)] ,

B44 = −iR21 − (ε33 −R
2
33)−1(q0 − iR31)[ε23

−iR33(p0 − iR23)] .

Equations (2.9, 2.11) allow to solve the general problem
of light propagation in an arbitrarily stratified anisotropic
chiral medium. For the special case of discrete isotropic
chiral layers, a somewhat different 4 × 4 transfer matrix
approach has been developed a few years ago [20]. The
longitudinal components of the electromagnetic field can
be expressed as a function of the transverse ones

ez = (ε33 −R
2
33)−1 {[−ε31 + iR33(q0 − iR13)]ex

−(p0 + iR32)hy − [ε32 + iR33(p0 + iR23)]ey

+(q0 − iR31)hx} ,

hz = (ε33 −R
2
33)−1 {−[iR33ε31 + ε33(q0 − iR13)]ex

−iR33(p0 + iR32)hy

+[−iR33ε32 + ε33(p0 + iR23)]ey

+iR33(q0 − iR31)hx} . (2.12)

As in the case of non gyrotropic media [21], we can define
a scalar product between two Berreman vectors ψa, ψb

(ψa, ψb) ≡ ψ
†
aMψb , (2.13)

where M is the metric matrix

M =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (2.14)

It can be checked that for lossless media, with the defini-
tion (2.11), the eigenvectors of the Berreman matrix are
orthogonal with respect to the scalar product (2.13). This
property ensures energy conservation through boundaries
and non-homogeneous samples [21].

3 Comparison with the exact model

An exact numerical approach to compute the optical prop-
erties of periodic dielectric stratified media, based on a
Bloch-wave decomposition of the electromagnetic field,
has been proposed some time ago [22] and applied to chi-
ral liquid crystals in phase grating geometries [23] and
with pitches smaller than the light wavelength [17]. In
these works it has been considered only the case in which
the periodicity is one-dimensional; the extension to two
and three-dimensional situations is trivial, but the com-
puting complexity increases dramatically. Moreover, if the
medium is not strictly periodic, or is made of slabs having
different periodicities, the application of this approach be-
comes clumsy. For these reasons, the homogeneous models
of short-pitch dielectric media are of particular interest. It
must also be noted that the optical properties of solid crys-
tals or chiral organic molecules are customarily described
only in terms of constitutive relations of the kind of equa-
tions (1.2) or (1.3), since in this case the spatial variations
of the optical responses are on atomic scales. In the past,
different inequivalent models have been employed to com-
pute reflectances and transmittances through gyrotropic
media [6,7]. Here, by analyzing the specific case of a S∗c
liquid crystal, for which both a homogeneous and a “mi-
croscopic” model is available, we want to test the validity
of such homogeneous descriptions against the exact prop-
erties of the true periodic structure.

We consider a S∗c liquid crystal slab having its helical
axis parallel to the x-axis of a Cartesian coordinate system
whose z-axis coincides with the direction of stratification.
By neglecting any biaxiality and intrinsic molecular chi-
rality, the local optical tensor of the S∗c can be written
as

ε = ε0 (εoI + εan⊗ n) , (3.1)

where I is the unit tensor and n is the nematic director,
that uniformly rotates around the helical axis x describing
a cone of semi-aperture α

n = cosαx̂ + sinα cos(qx)ŷ + sinα sin(qx)ẑ, (3.2)

where q = 2π/p is the S∗c wavevector and x̂, ŷ, and ẑ
are the unit coordinate vectors. The details of the calcu-
lation of light propagation in such kind of periodic media
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Fig. 1. TE-TM power reflection coefficient R as a function
of the polar incidence angle θi for a semi-infinite slab. The
azimuthal incidence angle is φi = 0◦. Here and in the following

figures ni = 1.5, no ≡ ε
1/2
o = 1.5, ne ≡ ε

1/2
e = 1.7, and α = 45◦.

Continuous line: homogeneous model; dashed: periodic exact
model. The pitch of the S∗c is p = 0.1λ.

in terms of Bloch-waves have already been presented else-
where [23,17] and will not be discussed here.

To avoid interference effects, we start by considering a
single interface, orthogonal to the z-axis, between the S∗c
and a homogeneous isotropic dielectric medium having in-
dex of refraction ni. Figure 1 shows a typical depolarized
intensity reflection curve for incident transverse electric
(TE) and reflected transverse magnetic (TM) waves in
the isotropic medium. In this figure, the incidence plane
coincides with the (x, z)-plane (φi = 0). This geometry
ensures that an incident TE (resp. TM) polarization cor-
responds in the homogeneous model to an ordinary (resp.
extraordinary) ray with respect to the real part of the di-
electric tensor of the gyrotropic medium. Therefore, a non-
zero depolarized reflectance is a signature of gyrotropy. In
Figure 1 the dashed line is the depolarized reflectance nu-
merically computed according to the exact periodic model.
The solid line is the corresponding curve obtained by a
standard Berreman approach [21] using our Berreman ma-
trix for gyrotropic media (2.11). As it is apparent, the
depolarized reflectivity computed according to the homo-
geneous model is much higher than that given by the true
periodic model. For instance, with the parameters used
in Figure 1, and in particular for a S∗c pitch p = 0.1λ,
the exact calculation gives an extremely small depolar-
ized power reflection coefficient at normal incidence of
1.6 × 10−10, while the homogeneous model gives a 600
times larger value of 9.6 × 10−8. This huge relative er-
ror remains practically unchanged as p/λ→ 0, even if, of
course, the absolute error goes to zero, since the depolar-
ized power reflection scales as (p/λ)2. Such a behavior is
a signature of an incorrect treatment, in the homogeneous
model, of the effects of a surface. When the periodicity
is taken into account, the surface generates an evanescent
wave extending on a thickness of the order of p, for p� λ.
The coupling between the evanescent and the propagating
waves effectively smooths the interface, reducing the de-
polarized reflection by a quantity of the order of p/λ with
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Fig. 2. Same as Figure 1, but for the TE-TE geometry. On
this scale the two curves are indistinguishable.
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Fig. 3. Same as Figure 1, but for azimuthal incidence angle
φi = 1◦.

respect to the value given by the homogeneous model,
which neglects the presence of such an evanescent wave.
It must be noticed, however, that the actual values of these
discrepancies are so tiny that it is questionable whether
they can be observed in a true experimental situation.

When simply measurable quantities are considered, as
the non-depolarized TE-TE reflectance shown in Figure 2,
the two models give practically the same answer: in the
case shown in Figure 2 the maximum relative error be-
tween the true and the homogeneous model is less than
10−2.

As soon as we tilt the incidence plane away from the
helical axis, which coincides with the optical axis of the ho-
mogeneous model, the contribution of the birefringence to
the depolarized reflections dominates, giving increasingly
larger depolarized reflectances. Correspondingly, the dif-
ferences between the homogeneous model and the exact
calculation rapidly disappear, as shown in Figure 3. This
makes even more delicate an experimental verification of
these theoretical results.

Let us now see what happens when, instead of a semi-
infinite medium, one considers a finite slab sandwiched
between two identical isotropic dielectrics. In this case, in-
terference effects due to multiple reflections are expected,
together with an interplay between the gyrotropy and the
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Fig. 4. TE-TM reflection coefficient for a finite slab with
thickness d = 25λ and pitch p = 0.1λ. The azimuthal inci-
dence angle is φi = 0◦. The inset shows the grazing incidence
peaks. Solid line: homogeneous model; dashed line: exact peri-
odic model.

birefringence. This is indeed shown in Figure 4, which
gives the depolarized TE-TM reflection coefficient for a
thin sample with thickness d = 25λ. Two systems of
fringes are present. The large ones are mainly due to the
interference between the ordinary (TE) and the extraordi-
nary (TM) rays propagating inside the birefringent sam-
ple: they are almost the same in both the models. The
shallow fine fringes, on the other hand, are due to the in-
terference of the extraordinary (TM) ray with itself in the
multiple reflections. They are almost absent in the true
periodic model because of the very low depolarized reflec-
tion at the first interface. This is confirmed by Figure 5:
increasing the pitch to p = 0.3λ enhances the depolarized
reflectivity of the first interface, in such a way that the pe-
riodic structure now displays marked fringes comparable
with those given by the homogeneous model. Here again,
however, an experimental verification is rather difficult,
due to both the relatively small value of the depolarized
reflectivity and to smoothing effect caused, e.g., by the
finite angular aperture of the light beam. The relative er-
rors in the depolarized transmittances are much smaller,
as shown in Figure 6, and practically unobservable in the
non-depolarized case, as shown for the TE-TE geometry
in Figure 7.

We can therefore conclude that the homogeneous mod-
els of optical activity correctly describe the bulk behavior,
such as, e.g., the optical rotation [16,17], but seem intrin-
sically unable to account for some of the details of the
boundary effects, whatever small is the periodicity. An-
other situation in which the homogeneous models trivially
fail is when the pitch becomes comparable to the light
wavelength, in such a way that Bragg reflections occur.
This can happen before that any diffracted propagating
beam appears outside of the periodic medium. This case
is illustrated in Figure 8 for the TM-TM reflectance. Here
the pitch of the S∗c is p = 0.33λ and, with respect to the
previous cases, the helical axis is anti-clockwise rotated of
20◦ in the (x, z)-plane with respect to the x-axis.
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Fig. 5. Same as Figure 4 but for p = 0.3λ and d = 5λ.
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Fig. 6. TE-TM power transmission coefficient T corresponding
to Figure 4.
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Fig. 7. TE-TE power transmission coefficient T corresponding
to Figure 4.

Finally, we note that a degenerate case in which the
homogeneous models never hold is when the boundary
planes are exactly orthogonal to the direction of the peri-
odicity [24]: this fact can be understood either by recog-
nizing that the orientation of the local optical axis on the
boundary planes – orientation that does not enter into the
homogeneous models – plays a determinant role, or, equiv-
alently, by considering that as the direction of periodicity
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Fig. 8. TM-TM reflectance for a semi-infinite slab with p =
0.33λ and S∗c helical axis inclined of 20◦ with respect to the
boundary planes. The azimuthal incidence angle is φi = 0◦.
Solid line: homogeneous model; dashed line: exact periodic
model.

becomes orthogonal to the boundary planes, the period of
the structure projected onto these planes diverges, giving
rise to propagating Bragg peaks.

4 Conclusions

Optical activity is one of the most striking manifestations
of the molecular structure of matter: the rate of rotation of
the plane of polarization of a light beam passing through
an optically-active medium is proportional to a/λ2, where
a is a typical molecular length. However, since usually
a� λ, it is generally understood that optical activity can
be described in terms of homogeneous continuum models.

In this paper, starting from the effective dielectric ten-
sor experienced by a plane wave traveling in an infinite
periodic dielectric medium having a pitch much smaller
than the light wavelength, we have developed a 4× 4 ma-
trix evolution equation for stratified gyrotropic media. To
preserve energy conservation, we have recasted the con-
stitutive equations in the Post formalism. Such a matrix
formulation, which extends the usual Berreman equations
to gyrotropic media, allows to easily compute the optical
properties of one-dimensional stratified media. As a test
model, we have considered the case of a short pitch chi-
ral smectic-C liquid crystal. The interest in such a system
stems from the availability of both a local “microscopic”
model, in terms of a periodic dielectric structure, and of
a homogeneous description, valid for pitches short with
respect to the light wavelength. The homogeneous model
corresponds to an optically-active medium for light prop-
agating orthogonally to the helix axis [24]. By considering
a finite or semi-infinite S∗c slab surrounded by a dielec-
tric isotropic medium, we have compared reflectances and
transmittances for linearly polarized incident light, com-
puted both taking into account of the full periodic struc-
ture [22] and according to the homogeneous model [11,12].
We have found that the depolarized reflection coefficients
computed on the basis of the true periodic structure dif-
fer from the homogeneous predictions by some orders of

magnitude, with a relative error that remains constant as
the pitch is decreased. Therefore, in principle, such a de-
viation should persist even in a solid crystal, in which the
pitch is on atomic scales. However, in this case the abso-
lute value of the depolarized reflections are so tiny that
they are hardly measurable. The reduction of the depo-
larized reflection coefficients causes a strong suppression
of interference fringes in thin samples.

In conclusion, the homogeneous models of optically-
active media correctly describe the bulk behavior but are
intrinsically unable to give some of the details of the
boundary effects. Another trivial situation in which they
fail is when the periodicity becomes comparable to the
light wavelength, such that Bragg reflections occur, even
before that any propagating diffracted beam appears out-
side of the periodic medium. Finally, the homogeneous
models completely fail when the direction of periodicity
is orthogonal to the boundaries [16,24], independently of
the pitch value. This can be understood either because
the period projected onto the boundary planes diverges,
or, equivalently, because in this geometry the local initial
and final phases of the periodic structure critically deter-
mine their optical properties.

We thank Prof. C. Oldano for fruitful discussions.
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